SARS-CoV-2 Viruses in Wastewater: Monitoring COVID-19 and Estimating Potential Transmission Risk
Sep 16, 2020
Since the beginning of the pandemic, research groups have been working on methods to detect SARS-CoV-2 viruses in wastewater to be used to monitor the degree of COVID-19 transmission among the population.
The idea is simple: since infected people shed SARS-CoV-2 viruses in their faeces, wastewater samples could give an indication of the infection numbers among all the residents connected to a wastewater treatment plant.
Given sufficient sensitivity, these analyses could function as an early-warning system for authorities, allowing early detection of local case increases within the catchment area of a treatment plant.
A consortium of Frankfurt virologists, ecotoxicologists and evolution researchers, and water researchers from Aachen have now shown for the first time in Germany that SARS-CoV-2 genetic material can be detected in treatment plants using modern molecular methods. Analyses revealed 3 to 20 gene equivalents per millilitre of raw wastewater in all nine treatment plants tested during the first pandemic wave in April 2020. This concentration level was also measured in studies in the Netherlands and the USA.
The researchers were astonished that older retention samples from the years 2017 and 2018, before the outbreak of the pandemic, also delivered signals. Extensive method validation revealed that the gene primer erroneously registered not only SARS-CoV-2, but other non-disease causing coronaviruses in wastewater as well. The current method, developed specifically for SARS-CoV-2 in wastewater, has been confirmed through gene sequencing.
The method can be now employed for what is called wastewater-based epidemiology: the measured viral load of a treatment plant allows conclusions on the number of COVID-19 infected individuals in the catchment area. In the largest treatment plant, 1,037 acute cases were estimated in the catchment area for a viral load of 6 trillion (6 x 1012) gene equivalencies pro day; in smaller treatment plants with viral loads lower by two orders of magnitude, 36 cases were estimated.
The sensitivity is sufficient as an early warning system to indicate whether the action value of 50 incidents per 100,000 residents has been exceeded. Earlier hopes that the precision would be sufficient to determine the estimated number infected people not reported through laboratory diagnosis have not yet been fulfilled. However, the scientists believe that further improvements in the methods are possible.
In vitro cell tests have shown that the SARS-CoV-2 fragments verified in the wastewater are non-infectious. However, due to the high loads and low retention capacity of conventional treatment plants, the behaviour of SARS-CoV-2 in the water cycle should be investigated more deeply. The authors of the study are working on making their knowledge available for an application of the method soon, with the goal of achieving a close cooperation between health ministries, environmental ministries, treatment plant operators and professional associations
The research team was formed on the initiative of the non-profit Research Institute for Water and Waste Management at RWTH Aachen (FiW), the Institute for Household Water Management at RWTH Aachen (ISA), the Institute for Medical Virology at University Hospital Frankfurt (KGU) and Department for Evolution Ecology and Environmental Toxicology at the Institute of Ecology, Evolution and Diversity at Goethe University Frankfurt, and is supported by six water boards in North Rhine-Westphalia, Germany, the LOEWE Centre for Translational Biodiversity Genomics (TBG) and the University of Saskatoon in Canada.
More News and Articles
Aug 28, 2024
News
ITpipes Secures $20M to Transform Water Infrastructure Management
ITpipes announced it has secured $20 million in equity financing from Trilogy Search Partners and Miramar Equity Partners.
Known for its trusted and user-friendly platform, ITpipes …
Aug 26, 2024
News
Professor Dr.-Ing. Dietrich Stein
With deep sadness we announce the loss of our founder and partner Prof Dr Dietrich Stein at the age of 85.
Engineers around the globe are thankful for his dedication to the inventions in the fields of sewers, …
Aug 26, 2024
News
PPI Releases New Installation Guide for PE4710 Pipe
PPI’s MAB-11-2024 Covers HDPE Water Pipelines Up to 60-in. Diameter and 10,000-ft Long Pulls
Developed by the Municipal Advisory Board (MAB) – and published with the help of the members of the …
Aug 23, 2024
News
Faster wide-scale leak detection now within reach
Mass deployment of connected leak loggers is being made possible by the latest technology, writes Tony Gwynne, global leakage solutions director, Ovarro
Water companies in England and Wales are …
Aug 21, 2024
News
Kraken awakens customer service potential in water
The innovative customer service platform Kraken has made a successful transfer from energy to water. Ahead of their presentation at UKWIR’s annual conference, Portsmouth Water chief executive …
Aug 19, 2024
News
Predicting the toxicity of chemicals with AI
Researchers at Eawag and the Swiss Data Science Center have trained AI algorithms with a comprehensive ecotoxicological dataset. Now their machine learning models can predict how toxic chemicals are …
Aug 16, 2024
News
Goodbye water loss: Trenchless pipe renewal in Brazil
Pipe renewal in Brazil
How do you stop water loss through leaks in old pipe systems without major environmental impacts and restrictions? The answer: with trenchless technology, or more precisely …
Aug 14, 2024
Article
Impact of high-temperature heat storage on groundwater
In a recently launched project, the aquatic research institute Eawag is investigating how the use of borehole thermal energy storage (BTES) affects the surrounding soil, the groundwater …
Aug 12, 2024
News
Watercare completes East Coast Bays sewer link
Watercare has successfully finished the final connection on the East Coast Bays link sewer at Windsor Park in New Zealand.
Much of the East Coast Bays sewer link was installed using horizontal directional …
Aug 09, 2024
Article
Innovative water solutions for sustainable cities
Cities need to become more sustainable and use their water resources more efficiently. Managing water in local small-scale cycles is one possible solution. A new white paper by Eawag, the University …
Aug 07, 2024
Article
How digital technologies contribute to universal drinking water
Digital water technologies have an important role in ensuring universal access to safe drinking water by 2030, that is according to a new report from the World Health Organisation. …
Aug 05, 2024
News
Knowledge transfer on sustainable water infrastructure in India
India’s fast-growing cities need an efficient infrastructure for water supply and wastewater disposal. A research cooperation, is therefore supporting the development of a sustainable …
Contact
Goethe University Frankfurt - Institute of Ecology, Evolution and Diversity
Prof. Dr. rer. nat. Henner Hollert
Theodor-W.-Adorno-Platz 1
60323 Frankfurt
Germany