Schad- und Spurenstoffe aus Abwasser entfernen
15.05.2013
Abwasserreinigung
Das Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB hat gemeinsam mit europäischen Partnern Verfahren entwickelt, um schwer abbaubare Schadstoffe im Abwasser effizient abzubauen. Diese Verfahren erzeugen reaktive Spezies, mit denen sich selbst hoch belastetes Deponiesickerwasser reinigen lässt. Polymere Adsorberpartikel wiederum können selektiv auch solche Schadstoffe entfernen, die in nur geringer Konzentration vorliegen.
Medikamente im Abwasser von Krankenhäusern werden ebenso wie halogenierte Verbindungen oder Cyanide aus Industrieabwässern kaum in den biologischen Stufen der Kläranlagen abgebaut. So haben sich Antibiotika und hormonell wirksame Verbindungen, beispielsweise Bisphenol A aus der Kunststoffherstellung, bereits in der Umwelt angereichert und sind im Grundwasser und selbst in Trinkwasserproben nachweisbar. Um solch persistente Schadstoffe aus Abwasser zu entfernen, müssen spezielle Reinigungsverfahren eingesetzt werden. Oxidative Prozesse, die Wasserstoffperoxid oder Ozon als Oxidationsmittel nutzen, haben sich in der Praxis bewährt.
Damit die verschiedenen Inhaltsstoffe industrieller Abwässer effektiv und effizient abgebaut werden, müssen die Verfahren in der Regel angepasst oder kombiniert werden. Für diese Aufgabe steht am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart eine Versuchsanlage zur Verfügung, mit der alle gängigen Verfahren einzeln und in beliebiger Kombination erprobt werden können. Ergänzt werden die bisherigen Verfahren durch zwei neue Verfahren, die reaktive Spezies, allen voran Hydroxyl-Radikale, effizient erzeugen. Diese oxidieren die Schadstoffe zu kleineren, abbaubaren organischen Molekülen oder mineralisieren sie vollständig zu CO2. Bei einem Verfahren werden die reaktiven Moleküle elektrochemisch in einem Anoden-Kathoden-Prozess erzeugt, bei dem anderen mit einem Atmosphärendruckplasma. Beide Verfahren kommen ohne den Zusatz von Hilfsstoffen aus.
Deponiesickerwasser oxidativ-elektrochemisch behandeln
Ein oxidatives Verfahren, welches ohne den Zusatz von Hilfsstoffen auskommt und aufgrund seines elektrochemischen Funktionsprinzips auch für sehr trübe Abwässer geeignet ist, hat das Fraunhofer IGB in dem von der EU geförderten Projekt CleanLeachate (Förderkennzeichen 262335, www.cleanleachate.eu) entwickelt. Das Konsortium mit sechs Partnern aus fünf europäischen Ländern behandelt hoch belastetes Sickerwasser, das auf Mülldeponien entsteht, mit einem gekoppelten Anoden-Kathoden-Prozess. Eine durch eine Membran geteilte Elektrolysezelle bildet dabei zwei getrennte chemische Reaktionsräume. Ein Schwerpunkt des Projekts war die Auswahl geeigneter Elektrodenmaterialien, vor allem der Anode, an der bei Anlegen einer Spannung Hydroxyl-Radikale als reaktive Spezies entstehen. Das verunreinigte Wasser passiert zunächst die Anode, wo es oxidiert wird, und wird danach zur Kathode gepumpt, wo die Inhaltsstoffe reduziert werden.
Das Verfahren wird derzeit in Tschechien auf einer Mülldeponie im Dauerbetrieb getestet. Der Prozess konnte bereits so optimiert werden, dass der chemische Sauerstoffbedarf und die Gesamtstickstoffkonzentrationen unter die gesetzlich vorgeschriebenen Grenzwerte gesenkt und die Anforderungen der Abwasserverordnung erfüllt werden. Um das Verfahren zur Marktreife zu bringen, wurde eine automatisierte und transportable Prototypanlage gebaut, mit der die Behandlung weiterer Abwässer getestet und Erfahrungen und verlässliche Daten für die weitere Optimierung gesammelt werden sollen.
Mit offenem Plasma Wasser reinigen
Ein weiterer neuer Ansatz ist die Anwendung eines Atmosphärendruckplasmas. Ein Plasma ist ein ionisiertes Gas, das neben Ionen und Elektronen auch chemische Radikale und elektronisch angeregte Teilchen sowie kurzwellige Strahlung enthält. Ein solches Plasma lässt sich durch ein elektromagnetisches Feld, beispielsweise durch Anlegen einer Hochspannung, zünden. Charakteristisch ist das Plasmaleuchten, welches in Leuchtstoffröhren zur Leuchtreklame genutzt wird. Technisch werden Plasmaverfahren seit langem zur gezielten Modifizierung und Reinigung von Oberflächen eingesetzt.
Dieses Prinzip nutzen die Partner des von der EU geförderten Projekts Wasserplasma, bei dem ein Plasma für die oxidative Reinigung von Wasser eingesetzt wird (»Water decontamination technology for the removal of recalcitrant xenobiotic compounds based on atmospheric plasma technology«, Förderkennzeichen 262033, www.waterplasma.eu). Ergebnis des Projekts ist ein Plasmareaktor, bei dem die im Plasma gebildeten reaktiven Spezies direkt in das mit Schadstoffen belastete Wasser übertreten können. Hierzu ist das Plasma »offen«: Es steht in direktem Kontakt zum Wasserfilm. Der Plasmareaktor ist so aufgebaut, dass zwischen einer geerdeten Elektrode in Form eines Edelstahlrohres im Inneren des Reaktors und einem Kupfernetz, welches die Funktion der Hochspannungselektrode übernimmt, durch Anlegen einer Hochspannung ein Plasma gezündet und aufrechterhalten wird. Das Kupfernetz ist auf einem Glaszylinder angebracht, der als dielektrische Barriere fungiert und gleichzeitig den Reaktor nach außen abschirmt. Im Innern des Edelstahlrohrs, dem Zentrum des Plasmareaktors, wird verunreinigtes Wasser nach oben gepumpt. Wenn das Wasser auf der Außenseite des Edelstahlrohrs herunterläuft, passiert es die Plasmazone zwischen Edelstahlrohr und Kupfernetz, in welcher die Schadstoffe oxidiert werden.
In Laborversuchen konnten die Fraunhofer-Forscher zeigen, dass eine Lösung des Farbstoffs Methylenblau innerhalb nur weniger Minuten vollständig entfärbt wird. Auch Cyanid wurde innerhalb von nur 2 Minuten um 90 Prozent effektiv abgebaut. Aufgrund der vielversprechenden Ergebnisse wird das Verfahren momentan in einem größeren Maßstab erprobt. Bei einem Projektpartner steht ein Demonstrator, der für die Reinigung von 240 Liter kontaminiertem Wasser pro Stunde ausgelegt ist. Aufgrund dieser Ergebnisse sollen das Reaktordesign und die Prozessführung dann weiter optimiert werden, um das Verfahren mit weiteren Partnern aus der Industrie zur Marktreife bringen zu können. Das Potenzial ist groß, denn bei diesem offenen Plasmaverfahren gibt es keine Barriere zwischen dem Ort, wo die oxidativen Radikale entstehen (Plasma) und dem zu reinigenden Wasser.
Entfernung von Spurenstoffen mit selektiven Adsorberpartikeln
Schadstoffe können auch effektiv mit selektiven Adsorbern aus Abwasser entfernt werden. Eine solche Adsorptionsstufe eignet sich vor allem dann, wenn Schadstoffe stark verdünnt bzw. nur gering konzentriert oder sehr spezifisch vorliegen. Sinnvoll ist ihr Einsatz auch, wenn ein Abwasserinhaltsstoff in biologischen Klärstufen zu toxischen Metaboliten abgebaut wird. Hier kann es sich lohnen, das Abwasser vorzubehandeln und den fraglichen Stoff vor der Einleitung in die Kläranlage selektiv zu entfernen.
Hierzu hat das Fraunhofer IGB ein einstufiges und kosteneffizientes Verfahren für die Herstellung polymerer Adsorberpartikel entwickelt. In dem patentierten NANOCYTES®-Prozess werden funktionelle Monomere mit einem Vernetzer zu nanoskopisch kleinen Polymerkügelchen, sogenannten selektiven polymeren Adsorberpartikeln, umgesetzt. Die Selektivität der Adsorberpartikel kann noch erhöht werden, wenn dem Gemisch zusätzlich diejenigen Zielmoleküle zugefügt werden, die es aus dem Wasser zu entfernen gilt. Der Trick: Nach der Polymerisation der Monomere werden die Zielmoleküle wieder aus den Adsorberpartikeln entfernt. Dabei hinterlassen sie einen »Abdruck«, der die entsprechenden Schadstoffe adsorbiert.
Die Fraunhofer-Forscher konnten so bereits Bisphenol A und Penicillin G selektiv aus Abwasser entfernen. Die Adsorberpartikel sind chemisch und thermisch stabil und können äußerst vielfältig eingesetzt werden, ob als Schicht in einer Kompositmembran oder als Matrix auf Füllkörpern. Eine Adsorptionskolonne steht am Fraunhofer IGB für Testzwecke zur Verfügung. Nach der Adsorption der Schadstoffe können die Adsorberpartikel regeneriert und wiederverwendet werden.
More News and Articles
28.08.2024
News
ITpipes Secures $20M to Transform Water Infrastructure Management
ITpipes announced it has secured $20 million in equity financing from Trilogy Search Partners and Miramar Equity Partners.
Known for its trusted and user-friendly platform, ITpipes …
26.08.2024
News
Professor Dr.-Ing. Dietrich Stein
With deep sadness we announce the loss of our founder and partner Prof Dr Dietrich Stein at the age of 85.
Engineers around the globe are thankful for his dedication to the inventions in the fields of sewers, …
26.08.2024
News
PPI Releases New Installation Guide for PE4710 Pipe
PPI’s MAB-11-2024 Covers HDPE Water Pipelines Up to 60-in. Diameter and 10,000-ft Long Pulls
Developed by the Municipal Advisory Board (MAB) – and published with the help of the members of the …
23.08.2024
News
Faster wide-scale leak detection now within reach
Mass deployment of connected leak loggers is being made possible by the latest technology, writes Tony Gwynne, global leakage solutions director, Ovarro
Water companies in England and Wales are …
21.08.2024
News
Kraken awakens customer service potential in water
The innovative customer service platform Kraken has made a successful transfer from energy to water. Ahead of their presentation at UKWIR’s annual conference, Portsmouth Water chief executive …
19.08.2024
News
Predicting the toxicity of chemicals with AI
Researchers at Eawag and the Swiss Data Science Center have trained AI algorithms with a comprehensive ecotoxicological dataset. Now their machine learning models can predict how toxic chemicals are …
16.08.2024
News
Goodbye water loss: Trenchless pipe renewal in Brazil
Pipe renewal in Brazil
How do you stop water loss through leaks in old pipe systems without major environmental impacts and restrictions? The answer: with trenchless technology, or more precisely …
14.08.2024
Fachartikel
Impact of high-temperature heat storage on groundwater
In a recently launched project, the aquatic research institute Eawag is investigating how the use of borehole thermal energy storage (BTES) affects the surrounding soil, the groundwater …
12.08.2024
News
Watercare completes East Coast Bays sewer link
Watercare has successfully finished the final connection on the East Coast Bays link sewer at Windsor Park in New Zealand.
Much of the East Coast Bays sewer link was installed using horizontal directional …
09.08.2024
Fachartikel
Innovative water solutions for sustainable cities
Cities need to become more sustainable and use their water resources more efficiently. Managing water in local small-scale cycles is one possible solution. A new white paper by Eawag, the University …
07.08.2024
Fachartikel
How digital technologies contribute to universal drinking water
Digital water technologies have an important role in ensuring universal access to safe drinking water by 2030, that is according to a new report from the World Health Organisation. …
05.08.2024
News
Knowledge transfer on sustainable water infrastructure in India
India’s fast-growing cities need an efficient infrastructure for water supply and wastewater disposal. A research cooperation, is therefore supporting the development of a sustainable …
Kontakt
Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB
Dr. Claudia Vorbeck
Nobelstraße 12
70569 Stuttgart
Deutschland
Telefon:
+49 (0) 711 / 9704031
Fax:
+49 (0) 711 / 9704200