Finding leaks while they’re easy to fix
Aug 21, 2017
Robot can inspect water or gas pipes from the inside to find leaks long before they become catastrophic.
Access to clean, safe water is one of the world’s pressing needs, yet today’s water distribution systems lose an average of 20 percent of their supply because of leaks. These leaks not only make shortages worse but also can cause serious structural damage to buildings and roads by undermining foundations.
Unfortunately, leak detection systems are expensive and slow to operate — and they don’t work well in systems that use wood, clay, or plastic pipes, which account for the majority of systems in the developing world.
Now, a new system developed by researchers at MIT could provide a fast, inexpensive solution that can find even tiny leaks with pinpoint precision, no matter what the pipes are made of.
The system, which has been under development and testing for nine years by professor of mechanical engineering Kamal Youcef-Toumi, graduate student You Wu, and two others, will be described in detail at the upcoming IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) in September. Meanwhile, the team is carrying out tests this summer on 12-inch concrete water-distribution pipes under the city of Monterrey, Mexico.
The system uses a small, rubbery robotic device that looks something like an oversized badminton birdie. The device can be inserted into the water system through any fire hydrant. It then moves passively with the flow, logging its position as it goes. It detects even small variations in pressure by sensing the pull at the edges of its soft rubber skirt, which fills the diameter of of the pipe.
The device is then retrieved using a net through another hydrant, and its data is uploaded. No digging is required, and there is no need for any interruption of the water service. In addition to the passive device that is pushed by the water flow, the team also produced an active version that can control its motion.
Monterrey itself has a strong incentive to take part in this study, since it loses an estimated 40 percent of its water supply to leaks every year, costing the city about $80 million in lost revenue. Leaks can also lead to contamination of the water supply when polluted water backs up into the distribution pipes.
The MIT team, called PipeGuard, intends to commercialize its robotic detection system to help alleviate such losses. In Saudi Arabia, where most drinking water is provided through expensive desalination plants, some 33 percent is lost through leakage. That’s why that desert nation’s King Fahd University of Petroleum and Minerals has sponsored and collaborated on much of the MIT team’s work, including successful field tests there earlier this year that resulted in some further design improvements to the system, Youcef-Toumi says.
Those tests, in a mile-long section of 2-inch rusty pipe provided by Pipetech LLC, a pipeline service company in Al Khobar, Saudi Arabia, that frequently uses the same pipe system for validating and certifying pipeline technologies. The tests, in pipes with many bends, T-joints, and connections, involved creating an artificial leak for the robot to find. The robot did so successfully, distinguishing the characteristics of the leak from false alarms caused by pressure variations or changes in pipe size, roughness, or orientation.
“We put the robot in from one joint, and took it out from the other. We tried it 14 times over three days, and it completed the inspection every time,” Wu says. What’s more, it found a leak that was about one gallon per minute, which is one-tenth the minimum size that conventional detection methods can find on average, and a third as large as those systems can find under even the best of conditions.
These leakage issues are widespread. “In China, there are many newly built cities and they all use plastic water pipes,” says Honghai Bi, CEO of Banzan International Group, one of the largest suppliers for plastic pipe adhesives in China. “In those new pipe systems there is still about 30 percent of water lost due to leaks every day. Currently there is not an effective tool to locate leaks in those plastic pipes, and MIT PipeGuard’s robot is the disruptive change we have been looking for.
”The next step for the team, after the field tests in Monterrey, is to make a more flexible, collapsible version of their robot that can quickly adapt itself to pipes of different diameters. Under the steets of Boston, for example, there are a mix of 6-, 8- and 12-inch pipes to navigate — many of them installed so long ago that the city doesn’t even have accurate maps of their locations. The robot would expand “like an umbrella,” Wu says, to adapt to each pipe.
The value of the robot is not just for reducing water losses, but also for making water services safer and more reliable. “When a leak occurs, the force of the water flowing from underground can do serious structural damage undermining streets, flooding houses, and damaging other underground utilities. There is also the issue of loss of service to residents and business for extended period of time,” says Mark Gallager, director of engineering and distribution at the Cambridge, Massachusetts, Water Department. The ability of this system to detect much smaller leaks could enable early detection and repair, long before serious pipe breaks occur.
Gallager says, “If we had the capability to find leaks when they first appear or before they get to the point of critical failure, that could equate to preventing the loss of millions of gallons of water annually. It could minimize the damage to infrastructure and the loss of water services to homes and businesses, and it could significantly reduce the associated cost.”
Not only could the system find leaks in virtually any kind of water pipe, it could also be used for other kinds of pipe distribution systems, such as those for natural gas. Such pipes, which are often old and also poorly mapped, have produced serious gas buildups and even explosions in some cities, but leaks are hard to detect until they become large enough for people to smell the added odorants. The MIT system was actually first developed to detect gas leaks, and later adapted for water pipes.
Ultimately, the team hopes, the robot could not just find leaks but also be equipped with a special mechanism they have designed, so that, at least for smaller leaks, it could carry out an instant repair on the spot.
The device has already attracted a series of honors and awards. The team members won the $10,000 prize at the 2017 MIT Water Innovation competition, and they were finalists in the MIT $100K Entrepreneurship Competition, where they won another $10,000. In the $100K finals, they won yet another $10,000 for the Booz Allen Hamilton Data Analytics Award, and they were one of the 25 winners nationwide to receive a $10,000 2017 Infy Maker Award from Infosys Foundation.
One of the judges in that $100k competition, DKNY CEO Caroline Brown, said “PipeGuard has created a simple, pragmatic and elegant solution to a complex problem. […] This robot is a great example of utilizing smart design to simplify complexity and maximize efficiency.”
The team presenting the results at the IROS conference includes Kristina Kim ’17 and Michael Finn Henry, a local high school student who was a summer intern at MIT. The founders of PipeGuard are Wu and MIT graduate students Jonathan Miller and Daniel Gomez.
More News and Articles
Aug 28, 2024
News
ITpipes Secures $20M to Transform Water Infrastructure Management
ITpipes announced it has secured $20 million in equity financing from Trilogy Search Partners and Miramar Equity Partners.
Known for its trusted and user-friendly platform, ITpipes …
Aug 26, 2024
News
Professor Dr.-Ing. Dietrich Stein
With deep sadness we announce the loss of our founder and partner Prof Dr Dietrich Stein at the age of 85.
Engineers around the globe are thankful for his dedication to the inventions in the fields of sewers, …
Aug 26, 2024
News
PPI Releases New Installation Guide for PE4710 Pipe
PPI’s MAB-11-2024 Covers HDPE Water Pipelines Up to 60-in. Diameter and 10,000-ft Long Pulls
Developed by the Municipal Advisory Board (MAB) – and published with the help of the members of the …
Aug 23, 2024
News
Faster wide-scale leak detection now within reach
Mass deployment of connected leak loggers is being made possible by the latest technology, writes Tony Gwynne, global leakage solutions director, Ovarro
Water companies in England and Wales are …
Aug 21, 2024
News
Kraken awakens customer service potential in water
The innovative customer service platform Kraken has made a successful transfer from energy to water. Ahead of their presentation at UKWIR’s annual conference, Portsmouth Water chief executive …
Aug 19, 2024
News
Predicting the toxicity of chemicals with AI
Researchers at Eawag and the Swiss Data Science Center have trained AI algorithms with a comprehensive ecotoxicological dataset. Now their machine learning models can predict how toxic chemicals are …
Aug 16, 2024
News
Goodbye water loss: Trenchless pipe renewal in Brazil
Pipe renewal in Brazil
How do you stop water loss through leaks in old pipe systems without major environmental impacts and restrictions? The answer: with trenchless technology, or more precisely …
Aug 14, 2024
Article
Impact of high-temperature heat storage on groundwater
In a recently launched project, the aquatic research institute Eawag is investigating how the use of borehole thermal energy storage (BTES) affects the surrounding soil, the groundwater …
Aug 12, 2024
News
Watercare completes East Coast Bays sewer link
Watercare has successfully finished the final connection on the East Coast Bays link sewer at Windsor Park in New Zealand.
Much of the East Coast Bays sewer link was installed using horizontal directional …
Aug 09, 2024
Article
Innovative water solutions for sustainable cities
Cities need to become more sustainable and use their water resources more efficiently. Managing water in local small-scale cycles is one possible solution. A new white paper by Eawag, the University …
Aug 07, 2024
Article
How digital technologies contribute to universal drinking water
Digital water technologies have an important role in ensuring universal access to safe drinking water by 2030, that is according to a new report from the World Health Organisation. …
Aug 05, 2024
News
Knowledge transfer on sustainable water infrastructure in India
India’s fast-growing cities need an efficient infrastructure for water supply and wastewater disposal. A research cooperation, is therefore supporting the development of a sustainable …
Contact
MIT News Office
77 Massachusetts Avenue, Room 11-400
MA 02139-4307 Cambridge
United States
Phone:
+1 617 253 2700
Fax:
+1 617 258 8762