Integrated Pathways for Meeting Climate Targets and Ensuring Access to Safe Water
Feb 07, 2019
IIASA researchers have led work to develop new pathways showing how the world can develop water and energy infrastructure consistent with both the Paris Agreement and the UN Sustainable Development Goal 6 (SDG6) – Ensure availability and sustainable management of water and sanitation for all.
The new analysis is one of the first to develop such global pathways. Meeting the Paris Agreement climate targets, to limit global warming to well below 2°C compared to pre-industrial levels, is vital to avoid catastrophic climate change.
However, the Paris Agreement also demands that mitigation decisions consider impacts on the SDGs. The SDGs, agreed in 2015, have the aim of ending poverty as well as protecting the environment. The SDGs cover a variety of areas, including hunger, energy, equality, education and health, as well as water and energy.
Water and energy goals are interdependent. Energy is vital to water and sanitation provision, for example in water pumping and treatment, while the energy sector is itself a large consumer of water, for example in power plant cooling and fuel processing. Reducing emissions from energy is key to achieving the Paris Agreement, therefore the research, which quantifies the interactions between the Paris Agreement and SDG6, will be useful to policymakers developing strategies for joint implementation.
The research was a collaboration between researchers from IIASA’s Energy, Water, and Transitions to New Technologies research programs and undertaken as part of the Integrated Solutions for Water, Energy and Land (ISWEL) Project. The researchers took a ‘nexus’ or integrated approach, looking at all the different elements within the water, energy and climate goals in an effort to balance the needs of each.
The international team enhanced the MESSAGEix-GLOBIOM integrated assessment model to account for changes in global water use as a result of socioeconomic change and the SDGs, and to link the projections to water availability, and the cost, energy and emissions impacts of future infrastructure systems. The scenario for population and economic growth was taken from the Shared Socioeconomic Pathways (SSPs) to look at different ways the world and society could progress. Policies consistent with the Paris Agreement and SDG6 were also included in the analysis.
Three water sector development scenarios were developed to compare the costs and impacts - Baseline, which as the name suggests, implies ‘business-as-usual’, SDG6-Supply, which incorporates the baseline water use projections but includes the expansion of technologies to mitigate growth in water demand, and SDG6-Efficiency, in which society makes significant progress in reaching sustainable water consumption across all sectors.
The model showed that under a middle-of-the-road human development scenario, around US$1trn per year will be needed to achieve the SDG6 goals by 2030. Incorporating the climate targets consistent with limiting climate change to 1.5C will increase these costs further by 8%. The cost of operating and transforming energy systems increases by 2-9% when the SDG6 goals are added, compared to a baseline situation where the SDG6 targets are not included. This is largely due to the need for energy-intensive water treatment processes and costs from water conservation measures.
“The results of our analysis show that combining clean water and climate policies can increase implementation costs, but these increases are relatively small in comparison to the cost for implementing each policy on its own. Finding and improving synergies between decarbonization and water efficiency is crucial for minimizing joint policy implementation costs and uncertainties”, says Simon Parkinson, a researcher from IIASA and the University of Victoria, who led the study.
For example, water pumping and treatment plants could be operated flexibly to provide important on-demand services to the electricity grid, which supports integration of renewable energy sources such as wind and solar. The researchers say that water and energy planners need to work more closely together to make sure that the development of water and energy systems taps into these and other opportunities and is consistent with the SDGs.
“The results emphasize water conservation across sectors is key to reducing potential trade-offs, particularly in water stressed regions where the SDG6 targets might require use of energy-intensive water technologies, such as wastewater recycling and desalination,” says Yoshihide Wada, deputy director of the Water Program and coauthor on the study.
Keywan Riahi, director of the IIASA Energy Program and study coauthor, says that similar research needs to be extended to other SDGs to understand how climate targets influence broader sustainable development.
“This research demonstrates the important role of integrated assessment models and a nexus approach in finding low-cost global transformation pathways consistent with multiple SDG objectives,” he adds.
More News and Articles
Aug 28, 2024
News
ITpipes Secures $20M to Transform Water Infrastructure Management
ITpipes announced it has secured $20 million in equity financing from Trilogy Search Partners and Miramar Equity Partners.
Known for its trusted and user-friendly platform, ITpipes …
Aug 26, 2024
News
Professor Dr.-Ing. Dietrich Stein
With deep sadness we announce the loss of our founder and partner Prof Dr Dietrich Stein at the age of 85.
Engineers around the globe are thankful for his dedication to the inventions in the fields of sewers, …
Aug 26, 2024
News
PPI Releases New Installation Guide for PE4710 Pipe
PPI’s MAB-11-2024 Covers HDPE Water Pipelines Up to 60-in. Diameter and 10,000-ft Long Pulls
Developed by the Municipal Advisory Board (MAB) – and published with the help of the members of the …
Aug 23, 2024
News
Faster wide-scale leak detection now within reach
Mass deployment of connected leak loggers is being made possible by the latest technology, writes Tony Gwynne, global leakage solutions director, Ovarro
Water companies in England and Wales are …
Aug 21, 2024
News
Kraken awakens customer service potential in water
The innovative customer service platform Kraken has made a successful transfer from energy to water. Ahead of their presentation at UKWIR’s annual conference, Portsmouth Water chief executive …
Aug 19, 2024
News
Predicting the toxicity of chemicals with AI
Researchers at Eawag and the Swiss Data Science Center have trained AI algorithms with a comprehensive ecotoxicological dataset. Now their machine learning models can predict how toxic chemicals are …
Aug 16, 2024
News
Goodbye water loss: Trenchless pipe renewal in Brazil
Pipe renewal in Brazil
How do you stop water loss through leaks in old pipe systems without major environmental impacts and restrictions? The answer: with trenchless technology, or more precisely …
Aug 14, 2024
Article
Impact of high-temperature heat storage on groundwater
In a recently launched project, the aquatic research institute Eawag is investigating how the use of borehole thermal energy storage (BTES) affects the surrounding soil, the groundwater …
Aug 12, 2024
News
Watercare completes East Coast Bays sewer link
Watercare has successfully finished the final connection on the East Coast Bays link sewer at Windsor Park in New Zealand.
Much of the East Coast Bays sewer link was installed using horizontal directional …
Aug 09, 2024
Article
Innovative water solutions for sustainable cities
Cities need to become more sustainable and use their water resources more efficiently. Managing water in local small-scale cycles is one possible solution. A new white paper by Eawag, the University …
Aug 07, 2024
Article
How digital technologies contribute to universal drinking water
Digital water technologies have an important role in ensuring universal access to safe drinking water by 2030, that is according to a new report from the World Health Organisation. …
Aug 05, 2024
News
Knowledge transfer on sustainable water infrastructure in India
India’s fast-growing cities need an efficient infrastructure for water supply and wastewater disposal. A research cooperation, is therefore supporting the development of a sustainable …
Contact
IIASA
Schlossplatz 1
2361 Laxenburg
Austria
Phone:
+43-2236 807 0
Fax:
+43-2236 71313