Lasers offer an automated way to test drinking water
Oct 02, 2013
To keep drinking water clean, experts are constantly monitoring our supply to check it for contaminants. Now laser technology will give them a helping hand: a new system automatically analyzes water samples at the waterworks itself.
In today’s world, we simply cannot do without lasers. We use them to print out documents, play CDs or DVDs, weld, cut, or bend car components, survey roads, monitor our bloodstream, and even remove tumors from our bodies. Now researchers from the Fraunhofer Institute for Applied Solid State Physics IAF in Freiburg have developed the technology for a further application. Their quantum cascade laser – a particular type of infrared laser – forms the core of an analysis apparatus that allows drinking water to be sampled automatically at the waterworks itself. As a result, water companies can determine within a few minutes whether their water contains any impurities – and what those impurities are. The system has been designed in order to enable immediate identification of dangerous substances. “The equipment samples the water for dangerous substances at the waterworks itself in the course of routine operations, and allows for a rapid response,” says Dr. Frank Fuchs, summarizing the advantages of the system. Dr. Fuchs is Fraunhofer IAF coordinator for the IRLSENS project, which is funded by Germany’s Federal Ministry of Education and Research (BMBF).
To examine the components of water, experts use molecular spectroscopy: that is to say, they examine the optical spectra of the molecules in the water. Each chemical com-pound has a unique spectrum, since individual molecules vibrate and absorb light at characteristic frequencies. Water itself is a very strong absorber of infrared light; since the light sources employed to date have delivered little power, until now examinations of this sort have been possible only in a laboratory setting. “The main sticking point is the intensity of the light. In order to be in a position to employ molecular spectroscopy at the waterworks itself, we needed to find a more powerful light source,” explains Fuchs.
Taking water samples in the course of routine operations
Fraunhofer IAF’s quantum cascade laser produces light that is up to 1000 times more concentrated than the silicon carbide thermal emitters used in the laboratory to date. Infrared radiation – which is at longer wavelengths that the human eye does not register – can be used to analyze impurities in the water. For molecular spectroscopy, analysts are interested in wavelengths between 7.3 and 11 micrometers. No longer must the water samples be prepared in the laboratory, costing time and money. Instead, they can be taken in situ in the course of routine operations. The measurement system is only a little larger than a shoebox, works automatically, and requires hardly any maintenance.
A demonstrator has already successfully undergone initial practical testing. At the Kleine Kinzig waterworks in the Black Forest, tests were conducted on various concentrations of sweetener as a simulant substance. Measurements were taken every three minutes over a period of six weeks, with the fully automated system collecting a total of 21,000 samples. The results were excellent: every sample was recorded in perfect detail, and there was not a single error. Even the concerns regarding the susceptibility of the laser spectrometer to vibrations were proved unfounded, since the machines and pumps in operation in the machine hall had no adverse impact on the test results. Providing there is sufficient demand, project partner Bruker Optik, the company that built the demonstrator, would like to develop the measurement system into a finished product.
The German drinking water system maintains extremely high quality standards. All German waterworks have their water samples checked regularly in laboratories such as the project partner Water Technology Center (TZW) in Karlsruhe. What’s more, each individual waterworks keeps a close eye on misting, pH value, and electric conductivity so that they can intervene immediately in the case of any anomaly. “If we see any such anomalies, this novel laser technology can quickly identify the dangerous substance on site and support water experts as they assess the situation,” finishes Fuchs.
More News and Articles
Aug 28, 2024
News
ITpipes Secures $20M to Transform Water Infrastructure Management
ITpipes announced it has secured $20 million in equity financing from Trilogy Search Partners and Miramar Equity Partners.
Known for its trusted and user-friendly platform, ITpipes …
Aug 26, 2024
News
Professor Dr.-Ing. Dietrich Stein
With deep sadness we announce the loss of our founder and partner Prof Dr Dietrich Stein at the age of 85.
Engineers around the globe are thankful for his dedication to the inventions in the fields of sewers, …
Aug 26, 2024
News
PPI Releases New Installation Guide for PE4710 Pipe
PPI’s MAB-11-2024 Covers HDPE Water Pipelines Up to 60-in. Diameter and 10,000-ft Long Pulls
Developed by the Municipal Advisory Board (MAB) – and published with the help of the members of the …
Aug 23, 2024
News
Faster wide-scale leak detection now within reach
Mass deployment of connected leak loggers is being made possible by the latest technology, writes Tony Gwynne, global leakage solutions director, Ovarro
Water companies in England and Wales are …
Aug 21, 2024
News
Kraken awakens customer service potential in water
The innovative customer service platform Kraken has made a successful transfer from energy to water. Ahead of their presentation at UKWIR’s annual conference, Portsmouth Water chief executive …
Aug 19, 2024
News
Predicting the toxicity of chemicals with AI
Researchers at Eawag and the Swiss Data Science Center have trained AI algorithms with a comprehensive ecotoxicological dataset. Now their machine learning models can predict how toxic chemicals are …
Aug 16, 2024
News
Goodbye water loss: Trenchless pipe renewal in Brazil
Pipe renewal in Brazil
How do you stop water loss through leaks in old pipe systems without major environmental impacts and restrictions? The answer: with trenchless technology, or more precisely …
Aug 14, 2024
Article
Impact of high-temperature heat storage on groundwater
In a recently launched project, the aquatic research institute Eawag is investigating how the use of borehole thermal energy storage (BTES) affects the surrounding soil, the groundwater …
Aug 12, 2024
News
Watercare completes East Coast Bays sewer link
Watercare has successfully finished the final connection on the East Coast Bays link sewer at Windsor Park in New Zealand.
Much of the East Coast Bays sewer link was installed using horizontal directional …
Aug 09, 2024
Article
Innovative water solutions for sustainable cities
Cities need to become more sustainable and use their water resources more efficiently. Managing water in local small-scale cycles is one possible solution. A new white paper by Eawag, the University …
Aug 07, 2024
Article
How digital technologies contribute to universal drinking water
Digital water technologies have an important role in ensuring universal access to safe drinking water by 2030, that is according to a new report from the World Health Organisation. …
Aug 05, 2024
News
Knowledge transfer on sustainable water infrastructure in India
India’s fast-growing cities need an efficient infrastructure for water supply and wastewater disposal. A research cooperation, is therefore supporting the development of a sustainable …
Contact
Fraunhofer Institute for Applied Solid State Physics
Dr. Frank Fuchs
Tullastr. 72
79108 Freiburg
Germany