PVC-O pipes – The most sustainable way to deliver water
Nov 19, 2013
The plastic pipe industry has long claimed that bi-oriented PVC-O pipe systems offer the most efficient and sustainable delivery of water. Developed over forty years ago, these high pressure pipes are used increasingly as a replacement for ductile iron pipes.
Recent scientific evidence not only confirms the suitability of these plastic pipe systems but also underscores their sustainability and long term performance. PVC4Pipes have reviewed these latest findings and what they could mean for water companies throughout the world. The main body of recent evidence has been drawn from work carried out by the independent Flemish Institute for Technological Research (VITO) to establish a European Product Declaration.
Commissioned by the European Plastic Pipes and Fittings Association (TEPPFA), VITO carried out life cycle assessment (LCA) from cradle to grave of PVC-O pipes manufactured in two separate wall thicknesses (1.8 mm and 2.7 mm). Their analysis confirms that these two pipe examples have a very low environmental impact over a lifespan of 100 years. Furthermore, their carbon footprint calculated on an annual basis for the purposes of global warming is similarly low and comparable to the driving of a car over a mere distance of 34 and 39 kilometers respectively.
Low environmental impacts
Steve Tan, spokesman for PVC4Pipes is convinced that these findings will encourage more water companies to favor PVC-O pipe systems: "We live in a world driven by economics and powered by choice. For any water pipeline installation, the price of pipe is only about ten percent of the full cost of installation. Water companies are well aware that PVC-O pipes outlive and outperform their heavy rivals and thus enhance the value of pipeline assets. The expression ‘paying the piper’ is about exercising responsibility and this new evidence underlines the sustainable credentials of PVC-O systems."
These credentials have been identified and quantified by VITO throughout the various main stages in their LCA assessment of PVC-O pipes. They include energy consumption and the CO2 emissions generated throughout the pipe’s life cycle such as extraction and raw material processing, production, transportation, installation and use. Common characteristics are low environmental impacts throughout the entire cradle to grave life cycle (see chart below for main environmental impacts).
A comparative LCA study carried out by Edge Environment in 2009 and commissioned by the Plastics Industry Pipe Association (PIPA) of Australia reached equally interesting conclusions. PVC-O water pipe systems have been successfully used in Australia for over 20 years. Using LCA methodology compliant to ISO 14044, Edge Environment examined and compared identical functional units of PVC-O pipes with cement-lined ductile iron pipes. They concluded that PVC-O pipe was ‘substantially the best performer.’
800 mm diameter pipe
Manufacturers of the machines that make PVC-O pipes agree. Rob Spekreijse is CEO of the Rollepaal Group, an international company that has pioneered the design and manufacture of complete PVC-O production lines. He recently told the Plastic Pipes Moscow 2013 conference that "PVC-O pipe systems are the most sustainable way to deliver water. Compared to ductile iron, their manufacture requires less material and energy to produce and their carbon footprint is almost eight times smaller. And they can be recycled repeatedly and efficiently to recreate new pipes from old for half a millennium."
Given the recent evidence for sustainability, plastic pipe experts expect world demand for PVC-O pipes to accelerate. But other factors could promote their popularity. The pipe is currently made in fifteen countries and a new host of national standards around the world is widening acceptance. The current range comprises 90 – 630 mm diameter and is specified within ISO 16422. The added prospect of a large diameter (800 mm) within this standard would enhance appeal.
Lowest failure rate
Further comparative evidence of the suitability of PVC pipe technology in the field of water delivery has been provided by Dr. Steven Folkman, associate professor at Utah State University. In 2011, Folkman and colleagues conducted a survey amongst 188 water companies in the US and Canada to obtain data on water main failures of municipal and private water supply systems. Results were significant. A major finding of the study was that PVC pipe has the lowest overall failure rate when compared to steel, cast iron, ductile iron, concrete and asbestos cement pipes. Plastic pipe failure rate amounted to approximately one half that of ductile iron and one tenth that of cast iron.
The survey also confirmed that corrosion was a major cause of water main breaks. 75 percent of all utilities reported corrosive soil conditions with a high portion of old cast iron and ductile steel pipes. This combination ranked corrosion as the second highest reason for water main pipe failure.
However, the burden of corrosion-prone pipe materials is not just limited to the enormous cost of repairing or replacing failed pipes. Steve Tan points to other economical and environmental factors. "Water is a scarce resource and water companies are aware of the cost of treated water leaking from the system as a result of corrosion. PVC-O pipes will not rust or corrode over time. Their ultra smooth surface means that less energy is needed to pump water through the delivery system. Technical estimates range from fifteen to twenty five percent. In a world where cheap energy no longer exists, this has to be factored into network maintenance equations."
"Energy can never be discounted," Tan explains. "Made from scrap iron, ductile iron pipes require more than twice the energy to produce than PVC-O pipes. The force of gravity is also a major environmental challenge - they are not easily moved. From truck to trench, their transportation and handling leaves deep carbon footprints."
Network benefits
Versatility is equally one of the major network benefits promoted by PVC4Pipes. "PVC-O networks are easy to design, install and expand. Their light weight, flexibility and toughness ensure reduced installation and maintenance costs. And when underground site conditions differ from the original master plan, solutions can easily be found. No above-ground recasting or remedial work is required. Such versatility is greatly appreciated by water and municipal engineers, contractors, specifiers and thus users."
More News and Articles
Aug 28, 2024
News
ITpipes Secures $20M to Transform Water Infrastructure Management
ITpipes announced it has secured $20 million in equity financing from Trilogy Search Partners and Miramar Equity Partners.
Known for its trusted and user-friendly platform, ITpipes …
Aug 26, 2024
News
Professor Dr.-Ing. Dietrich Stein
With deep sadness we announce the loss of our founder and partner Prof Dr Dietrich Stein at the age of 85.
Engineers around the globe are thankful for his dedication to the inventions in the fields of sewers, …
Aug 26, 2024
News
PPI Releases New Installation Guide for PE4710 Pipe
PPI’s MAB-11-2024 Covers HDPE Water Pipelines Up to 60-in. Diameter and 10,000-ft Long Pulls
Developed by the Municipal Advisory Board (MAB) – and published with the help of the members of the …
Aug 23, 2024
News
Faster wide-scale leak detection now within reach
Mass deployment of connected leak loggers is being made possible by the latest technology, writes Tony Gwynne, global leakage solutions director, Ovarro
Water companies in England and Wales are …
Aug 21, 2024
News
Kraken awakens customer service potential in water
The innovative customer service platform Kraken has made a successful transfer from energy to water. Ahead of their presentation at UKWIR’s annual conference, Portsmouth Water chief executive …
Aug 19, 2024
News
Predicting the toxicity of chemicals with AI
Researchers at Eawag and the Swiss Data Science Center have trained AI algorithms with a comprehensive ecotoxicological dataset. Now their machine learning models can predict how toxic chemicals are …
Aug 16, 2024
News
Goodbye water loss: Trenchless pipe renewal in Brazil
Pipe renewal in Brazil
How do you stop water loss through leaks in old pipe systems without major environmental impacts and restrictions? The answer: with trenchless technology, or more precisely …
Aug 14, 2024
Article
Impact of high-temperature heat storage on groundwater
In a recently launched project, the aquatic research institute Eawag is investigating how the use of borehole thermal energy storage (BTES) affects the surrounding soil, the groundwater …
Aug 12, 2024
News
Watercare completes East Coast Bays sewer link
Watercare has successfully finished the final connection on the East Coast Bays link sewer at Windsor Park in New Zealand.
Much of the East Coast Bays sewer link was installed using horizontal directional …
Aug 09, 2024
Article
Innovative water solutions for sustainable cities
Cities need to become more sustainable and use their water resources more efficiently. Managing water in local small-scale cycles is one possible solution. A new white paper by Eawag, the University …
Aug 07, 2024
Article
How digital technologies contribute to universal drinking water
Digital water technologies have an important role in ensuring universal access to safe drinking water by 2030, that is according to a new report from the World Health Organisation. …
Aug 05, 2024
News
Knowledge transfer on sustainable water infrastructure in India
India’s fast-growing cities need an efficient infrastructure for water supply and wastewater disposal. A research cooperation, is therefore supporting the development of a sustainable …
Contact
PVC4Pipes
Steve Tan
Avenue Van Nieuwenhuyse 4/4
1160 Brussels
Belgium