Wessex Water Achieves 75% Saving With Enhanced Process
May 17, 2019
WPL’s Hybrid-SAF™ is more cost-efficient than planned trickling filters. An early collaboration delivers multiple delivery and operational benefits.
Population growth in the town of Sherborne in Dorset meant that the rural water recycling facility owned and operated by Wessex Water required an upgrade to manage overload. Initially the utility was planning to construct two to three additional 30m-diameter trickling filters, but such a development posed an issue around footprint on this land-constrained site.
Instead, the utility was looking for an alternative solution and was scouting for high-rate processes and ways of utilising existing abandoned structures onsite. Andrew Gulliford, process design manager at Wessex Water, identified WPL’s enhanced biological treatment process via an article in an industry publication and invited the company to the Sherborne site.
A key advantage of WPL’s Hybrid-SAF™ precision-engineered treatment system is that it can be retrofitted into any vessel, regardless of shape or size, to deliver more efficient wastewater processing. During the initial collaborative planning stages of the project, the repurposing potential of an abandoned 12m-diameter onsite sludge tank was identified.
Together the partners calculated that a potential cost-saving of 75% in capital expenditure could be achieved by retrofitting this existing infrastructure with WPL’s technology as an alternative to the planned project. WPL’s Hybrid-SAF technology comprises a submerged moving-bed, fixed-film reactor and can treat wastewater in a more sustainable and cost-effective way than traditional submerged aerated filters (SAFs).
Doubling capacity
Retrofitting the circular vessel with modular WPL Hybrid-SAF cells could utilise the entirety of the vessel, whilst providing secondary biological treatment for 50% of the works’ flow-to-full-treatment. By doubling the process capacity, a permanent alternative to the planned trickling filters was identified and, looking at a 20-year horizon, one that was significantly cheaper.
Off-site manufacture of the modular process technology cells meant that the onsite project delivery time would be a couple of days, rather than a possible 12-months for the civils work required for new trickling filters.
WPL’s technical director Andrew Baird says, “WPL’s Hybrid-SAF is a significant step forward for submerged biological treatment. Our research and development team has conceived the hydrodynamic profile underpinning the technology in a new way, which has been made possible by the use of a high specific surface area media. The result is that significant process efficiency advantages have been achieved, including reductions in cost, physical footprint and electricity consumption, all whilst increasing the overall process capacity of the site and improving environmental compliance. Being involved in the project at the start and working collaboratively with Wessex Water meant the best solution for the site could be identified very early on.”
The first flows entered the system on 1 October 2018 and the first data was recorded on 30 October. Results showed ammonia (NH3) levels at <0.4mg/l, well within the 10mg/l consent demanded by the Environment Agency.
Close collaboration
Getting-in-early on the project and meeting the end-user face-to-face and onsite meant WPL was able to fully understand the objectives of the client. The full scope of the project, including everything from the type of media installed in the biozone to the logistics of restricted access to this rural site, could be considered in designing the optimum solution.
Wessex Water also shared the 2040 design horizon with WPL, which ensured a solution that was futureproofed. The utility now has more flexibility in how throughput can be increased at Sherborne for population growth from 12,600 to 15,700 in the catchment.
The modular WPL Hybrid-SAF cells were manufactured within six to eight weeks, installed in two days and the process optimised within three weeks. Offsite manufacture also meant onsite health and safety risk was reduced and quality control easier to maintain.
Height and width restrictions for vehicles and plant both onsite and in accessing the site were considered at the design stage. Off-site manufacture and shorter project time also meant fewer vehicle journeys, causing less disruption for the local community and reduced carbon emissions.
Sustainability benefits
The 30% smaller site footprint at Sherborne is also reflected in the energy consumption of the plant itself, which is reduced by a similar measure. Variable speed blowers are delivering 50-100% of design requirements, allowing greater headroom for power optimisation.
Lower levels of operator maintenance are required than with traditional treatment systems and individual cells can be replaced in a few hours without impacting on service or taking treatment vessels offline.
Other sustainability benefits include the repurposing of the tank, which meant there was no need to rip out the existing process treatment vessel and dispose to landfill. A minimal amount of concrete was required in lining the repurposed 12m-diameter tank. In addition, the WPL Hybrid-SAF’s neutrally buoyant media is manufactured from recycled materials.
Andrew Gulliford, process design manager at Wessex Water said, “Working closely with WPL at the earliest stages of planning for Sherborne water recycling facility meant that together we could completely reimagine the possibilities at this constrained site. Wessex Water customers will benefit from the 75% cost saving on this project and the energy efficiencies achieved will help deliver our sustainability targets.”
More News and Articles
Aug 28, 2024
News
ITpipes Secures $20M to Transform Water Infrastructure Management
ITpipes announced it has secured $20 million in equity financing from Trilogy Search Partners and Miramar Equity Partners.
Known for its trusted and user-friendly platform, ITpipes …
Aug 26, 2024
News
Professor Dr.-Ing. Dietrich Stein
With deep sadness we announce the loss of our founder and partner Prof Dr Dietrich Stein at the age of 85.
Engineers around the globe are thankful for his dedication to the inventions in the fields of sewers, …
Aug 26, 2024
News
PPI Releases New Installation Guide for PE4710 Pipe
PPI’s MAB-11-2024 Covers HDPE Water Pipelines Up to 60-in. Diameter and 10,000-ft Long Pulls
Developed by the Municipal Advisory Board (MAB) – and published with the help of the members of the …
Aug 23, 2024
News
Faster wide-scale leak detection now within reach
Mass deployment of connected leak loggers is being made possible by the latest technology, writes Tony Gwynne, global leakage solutions director, Ovarro
Water companies in England and Wales are …
Aug 21, 2024
News
Kraken awakens customer service potential in water
The innovative customer service platform Kraken has made a successful transfer from energy to water. Ahead of their presentation at UKWIR’s annual conference, Portsmouth Water chief executive …
Aug 19, 2024
News
Predicting the toxicity of chemicals with AI
Researchers at Eawag and the Swiss Data Science Center have trained AI algorithms with a comprehensive ecotoxicological dataset. Now their machine learning models can predict how toxic chemicals are …
Aug 16, 2024
News
Goodbye water loss: Trenchless pipe renewal in Brazil
Pipe renewal in Brazil
How do you stop water loss through leaks in old pipe systems without major environmental impacts and restrictions? The answer: with trenchless technology, or more precisely …
Aug 14, 2024
Article
Impact of high-temperature heat storage on groundwater
In a recently launched project, the aquatic research institute Eawag is investigating how the use of borehole thermal energy storage (BTES) affects the surrounding soil, the groundwater …
Aug 12, 2024
News
Watercare completes East Coast Bays sewer link
Watercare has successfully finished the final connection on the East Coast Bays link sewer at Windsor Park in New Zealand.
Much of the East Coast Bays sewer link was installed using horizontal directional …
Aug 09, 2024
Article
Innovative water solutions for sustainable cities
Cities need to become more sustainable and use their water resources more efficiently. Managing water in local small-scale cycles is one possible solution. A new white paper by Eawag, the University …
Aug 07, 2024
Article
How digital technologies contribute to universal drinking water
Digital water technologies have an important role in ensuring universal access to safe drinking water by 2030, that is according to a new report from the World Health Organisation. …
Aug 05, 2024
News
Knowledge transfer on sustainable water infrastructure in India
India’s fast-growing cities need an efficient infrastructure for water supply and wastewater disposal. A research cooperation, is therefore supporting the development of a sustainable …
Contact
WPL Ltd
Lianne Ayling
Marketing Manager
Unit 1 Aston Road
Waterlooville PO7 7UX
United Kingdom
Phone:
+44 2392 242 635